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The fast reduction of the six-dimensional phase space of muon beams is an essential requirement for 

muon colliders and also of great importance for neutrino factories based on accelerated muon 

beams.  Ionization cooling, where all momentum components are degraded by an energy absorbing 

material and only the longitudinal momentum is restored by rf cavities, provides a means to quickly 

reduce transverse beam sizes.  However, the beam energy spread cannot be reduced by this method 

unless the longitudinal emittance can be transformed or exchanged into the transverse emittance.  

Emittance exchange plans until now have been accomplished by using magnets to disperse the beam 

along the face of a wedge-shaped absorber such that higher momentum particles pass through 

thicker parts of the absorber and thus suffer larger ionization energy loss.  In the scheme advocated 

in this paper, a special magnetic channel designed such that higher momentum corresponds to a 

longer path length, and therefore larger ionization energy loss, provides the desired emittance 

exchange in a homogeneous absorber without special edge shaping.   Normal-conducting rf cavities 

imbedded in the magnetic field regenerate the energy lost in the absorber.  One very attractive 

example of a cooling channel based on this principle uses a series of high-gradient rf cavities filled 

with dense hydrogen gas, where the cavities are in a magnetic channel composed of a solenoidal 
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field with superimposed helical transverse dipole and quadrupole fields.  In this scheme, the energy 

loss, the rf energy regeneration, the emittance exchange, and the transverse cooling happen 

simultaneously.  The theory of this helical channel is described in some detail to support the 

analytical prediction of almost a factor of a million reduction in six-dimensional phase space 

volume in a channel about 56 meters long.  Equations describing the particle beam dynamics are 

derived and beam stability conditions are explored.  Equations describing six-dimensional cooling 

in this channel are also derived, including explicit expressions for cooling decrements and 

equilibrium emittances.  
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I. INTRODUCTION 

The fast reduction of the six-dimensional (6D) phase space of muon beams is an essential 

requirement for muon colliders [1,2,3] and also of great importance for neutrino factories [4,5,6] 

based on accelerated muon beams.  Ionization cooling [7,8] provides a means to quickly reduce 

transverse beam sizes, but the beam momentum spread cannot be reduced by this method unless the 

longitudinal emittance can be transformed or exchanged into the transverse emittance.   

In the scheme advocated in this paper, a muon beam cooling-channel is made of a series of 

rf cavities filled with high-density hydrogen gas, which provides simultaneous emittance exchange 

and transverse ionization cooling by virtue of a superimposed helical magnetic field.  Coils placed 

outside of the rf cavities create a solenoidal magnetic field component, which does not change 

direction, and transverse dipole and quadrupole helical components, which change direction along 

the channel axis in the same manner as is found in spin-rotating magnets used in Siberian 

Snakes [9].  The energy loss, the rf energy regeneration, the emittance exchange, and the transverse 

cooling happen simultaneously.  Except for the pressure windows at the two ends of the channel, the 

muons pass only through hydrogen for the most efficient cooling possible.  As the beam travels 

down the channel the beam bunches become shorter and smaller such that higher frequency rf 

cavities with smaller transverse dimensions can be used to allow more efficient rf parameters and 

smaller diameter magnets to enable higher fields and gradients. 

 

 A. Emittance exchange in a homogeneous absorber 

The idea that is the basis of this paper for a 6D cooling-channel is seen in a comparison of 

figures 1a and 1b.   Figure 1a is a conceptual picture of the usual mechanism for reducing the 

energy spread in a muon beam.  The dispersion of the beam generated by the dipole magnet in 

figure 1a creates an energy-position correlation at a wedge-shaped absorber. Higher energy particles 



Submitted to PRSTAB                                                            MUC-PUB-COOL_THEORY-284 

 5

pass through thicker parts of the absorber and so have more energy loss than particles of less 

energy.  After the absorber the beam becomes more monoenergetic.  This process is emittance 

exchange, as it is sometimes called, because the transverse emittance must grow to allow the 

longitudinal emittance to be cooled.  In figure 1a, the beam is in vacuum except in the wedge 

absorber.  Subsequent rf cavities, also in vacuum, replace the energy lost in the absorber. The 

process is limited by multiple scattering in the absorber and the high-Z windows that isolate the 

evacuated rf cavities and that contain the absorbers. 

 

  

 

 

 

 

 

 

 

 

FIG. 1. (Color) a) Wedge Absorber Technique     b) New Homogeneous Absorber Technique.                           

In previous cooling plans, both the emittance exchange process and the transverse ionization 

beam cooling processes have been implemented by sequentially alternating absorbers and evacuated 

rf cavities.  Moreover, the usual 6D schemes require sequential use of wedge absorbers for 

emittance exchange followed by unshaped absorbers for transverse cooling followed by rf cavities 

to regenerate the lost energy.   
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The new idea advocated in this paper is shown conceptually in Fig. 1b.  In this simpler 

picture, the cooling channel magnets are filled with dense gaseous energy absorber.  The magnetic 

dispersion creates a longer path length for particles of higher momentum.  The longer path length, in 

turn, times the absorber dE/ds gives the energy loss correlation with momentum needed for 6D 

cooling.  Thus a homogeneous absorber, without shaped edges, can be used to accomplish emittance 

exchange.  Note that the 180-degree geometry shown in the figures is chosen purely to illustrate the 

principles involved; the geometry of the cooling channel proposed below is quite different. 

A second new idea advocated here is that the rf cavities can be inside the cooling channel 

magnets and operate while filled with the gaseous energy absorber.  Thus the ionization energy loss 

and the rf energy regeneration can be simultaneous rather than sequential.   

 

 B. rf cavities filled with absorber 

The initial concept that a homogeneous absorber, one without shaped edges, would be 

attractive for emittance exchange is related to the development of rf cavities filled with dense gas 

[10].  A project [11] presently underway at Fermilab has demonstrated that an 800 MHz rf cell filled 

with cold, pressurized hydrogen gas can achieve 80 MV/m with exceptionally short conditioning 

times [12].  This project is to study the use of high-pressure gases in rf cavities to facilitate large 

gradients by suppressing high-voltage breakdown by virtue of Paschen’s Law [13].   A series of 

contiguous pillbox cavities similar to the one being developed in this project could define the helical 

cooling channel described in this paper. 

Most rf cavities associated with particle accelerators operate in as close to a vacuum as 

possible to avoid electrical breakdown.  This is done so that electrons or ions that are accelerated by 

the high voltages in the rf cavity rarely encounter atoms of the residual gas, and so the avalanche 

process of breakdown is inhibited.  Other rf systems that do not require the ultrahigh vacuum of an 
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accelerator typically suppress rf breakdown by using dense materials between electrodes.  Ions 

passing through these materials, which include high-pressure and/or high-density gases, have such a 

short mean free path between collisions that they do not accelerate to energies high enough to create 

an avalanche.  The relationship between the electrical breakdown voltage and the product of gas 

pressure and gap width is known as Paschen’s Law.   

The gas in the cavities also acts as the energy absorber needed for ionization cooling, where 

hydrogen or helium are the only realistic choices because of their favorable energy loss and 

radiation length.  All things considered, however, hydrogen is superior in all aspects except for 

perceived safety concerns.  Hydrogen gas has over twice the ionization cooling effectiveness as 

helium in that it allows a final cooled emittance (proportional to ( 1)Z + ), that is smaller by a factor 

of 1.5 in each transverse plane.  At the same pressure, hydrogen suppresses rf breakdown at a 

voltage that is six times higher than helium.  Hydrogen is also superior in heat capacity and 

viscosity, which are important parameters for the engineering of a practical cooling channel. 

This idea of filling rf cavities with gas is new for particle accelerators and is only possible 

for muons because they do not scatter as do strongly interacting protons or shower electro- 

magnetically as do less-massive electrons.  Additionally, use of a gaseous absorber presents other 

practical advantages that make it a simpler and more effective cooling method compared to liquid 

hydrogen flasks in the conventional designs of transverse cooling channels, such as the scheme 

envisioned by the MICE [14] collaboration for a demonstration experiment proposed for Rutherford 

Appleton Laboratory (RAL).   

 
 C. Helical Cooling Channel Segment Example 
 

Figure 2 is a display from G4Beamline [15], a simulation program based on GEANT4 [16], 

of an initial 10 meter-long cooling channel segment, which shows one possible arrangement of 
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pressurized rf cavities.  In this example, the rf cavities are displaced transversely from the structure 

axis such that the muon beam passes through their centers.  The forty rf cavities shown in red in this 

example are 200 MHz pillbox cavities with 30 cm diameter aperture.  Figure 3 is an end-view of the 

same channel, where the (red) outlines of the rf cavities can be seen.  Fifty muon trajectories (blue) 

are seen relative to the (white) equilibrium orbit. 

 

 

FIG 2.  (Color) G4Beamline  display of a 10 meter-long segment of a helical cooling channel 

that is being simulated.  The outlines of the forty 200 MHz pillbox rf cavities are shown in red.  

In this simulation, superimposed magnetic fields with solenoidal and helical components 

provide focusing and dispersion as the muons pass through the hydrogen-filled rf cavities.   

Muon trajectories are shown (blue) as they oscillate about the equilibrium orbit (white). 

Superconducting coils (not shown) surround the rf cavities to provide a magnetic field with 

solenoidal, helical dipole, and helical quadrupole components to create the muon orbits indicated by 

the blue traces in the figure.  The object of this paper is to describe the characteristics of this 

magnetic channel, which has unusually good acceptance and cooling qualities.  The simulations of 

B_solenoid=3.5T 
B_helical_dipole=1.01T 
B'_helical_quad=0.639T/m 

200 MHz pillbox rf cavities are displaced 
transversely to follow the equilibrium orbit 

Geant4 Simulation Study using G4Beamline  
of a 10m helical cooling channel segment
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this channel are underway and will be reported in later papers.  Later in this paper, a cooling 

channel example is described which has three segments such as the one shown here, each with rf 

frequencies and dimensions adjusted as the beam shrinks to attain optimum cooling rates. 

 

FIG 3.  (Color) The same as conditions as figure 2, but viewed looking down the cooling 

channel.  The beam here is at 200 MeV/c with a helix radius of 11 cm.  The outlines of the 

radially-displaced rf cavities are shown in red.  The red box shown for orientation in the 

center is 10 cm on a side. 

 

 D. Comparison with Ring Coolers 

 
There have been several proposed emittance exchange schemes based on the use of 

wedge absorbers in muon beam accelerators and storage rings [1, 2, 17].  The most recent 

progress in the study of 6D cooling has been with Ring Coolers (RC), where muons pass several 

times through a small storage ring with dispersion regions for emittance exchange cooling [18].  

RCs are sophisticated devices, where many difficult problems have been addressed using 
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combinations of dipole, solenoidal, and quadrupole magnets interspersed with rf cavities and 

energy absorbers of different materials and shapes.  

Although 6D cooling is very much required to satisfy the requirements of a muon 

collider, in the most recent exercises it is looked at more often as a possible way to economize 

the construction costs of a neutrino factory.  In this context, 6D cooling reduces transverse beam 

sizes and bunch lengths so that higher frequency and therefore more economical rf can accelerate 

muons to the energy of the storage ring of a neutrino factory.  This acceleration to the storage 

ring energy in Fermilab and Brookhaven neutrino factory design studies used recirculating 

Linacs, which amounted to more than a quarter of the neutrino factory construction costs. 

An RC is in itself a way to economize in that the 15 or so turns the beam makes during 

the cooling process allows equipment to be reused.  A ring is also a rather familiar device for 

accelerator physicists, where tricks for dispersion creation and simultaneous matching of 

transverse and longitudinal constraints are known.  

All RCs share common difficulties.  Injection (and extraction to a lesser extent) is 

particularly troublesome because it requires a kicker magnet with parameters unlike any that 

have been built up to now because the initial beam size is large.  The space in the ring lattice 

taken up by the injection/extraction system usually causes some problem because it changes the 

symmetry of the ring and displaces rf and absorbers, reducing cooling efficiency.  The RC must 

be designed to accommodate the initial conditions of the muon beam when it is injected.  As the 

beam gets cooled, all six dimensions shrink and the RC is less and less a good match to the beam 

size, especially from the standpoint of dispersion, absorber parameters, and rf frequency.  

Additional difficulties with ring coolers arise from the multiple passes of the beam through rf 
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cavities and absorbers, where rf beam loading and absorber heating issues are just being 

addressed. 

Since the cooling channel that we are advocating in this paper is essentially a Linac filled 

with absorber, these difficulties are not issues.  Injection and extraction, matching to the beam 

dimensions as the beam cools, and rf beam loading and absorber heating from multiple passes 

are not problems for a linear cooling channel. 

RCs cannot easily take advantage of the pressurized high-gradient rf cavities being 

developed by Muons, Inc. and IIT at Fermilab.  To use these rf cavities effectively, the entire 

ring would have to be filled with dense hydrogen gas since pressure windows would be 

counterproductive.  Beam passing through areas without rf cavities would then suffer a large 

energy loss. Reducing the gas density could reduce the energy loss, but that would diminish the 

hoped-for gains of the pressurized cavities.  Nevertheless, we note that the idea of using gas-

filled ring coolers is being investigated with encouraging results [19]. 

RCs and the helical channel proposed here are similar in two respects.  First, neither will 

easily accept a beam from a pion decay channel without some transverse precooling, rf bunching, 

and carefully matched injection parameters.  Second, the helical channel has features of a weak 

focusing storage ring [20] (installed in a vertical plane, with an effective field index calculated 

below), where the orbits follow a spiral rather than a circular path. 

 

 II. GENERAL TECHNICAL APPROACH 

 A. Helical magnets  

The technology of helical dipole magnets [21] is well known, for example at Brookhaven 

where helical “Siberian snakes” [22] are used for spin control in RHIC.  A helical dipole can be 
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imagined as a superconducting dipole magnet wound on a beam tube, much like a Tevatron 

superconducting dipole, twisted about its axis so that the dipole bending field rotates its direction 

as the particle passes down the tube.  A schematic of a helical dipole magnet [23] is shown in 

Figure 4.  We note that for initial ionization cooling of a muon beam, the helical magnets may 

require four times the aperture than has been used up to now (~30 cm).  Also note that the field 

of a helical dipole magnet is not intuitively obvious.  For example, depending on the dimensions 

and period, the longitudinal and the transverse components can be comparable and have 

significant gradients.  Given the right initial conditions, a particle will pass through this magnet 

on a helical trajectory about the magnet axis. 

   

 

 

 

 

 

 

 

 

 

 

FIG. 4.  Schematic representation of a helical dipole magnet showing the coil configuration 

and a cut-away view of the iron flux-return cylinder. 
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B. Helical cooling channel 

The path of a muon traveling down a solenoid without helical magnets is also a helix, 

where the muon momentum transverse to the axis of the solenoid generates a projected circular 

orbit with the usual Larmor or cyclotron radius and frequency.  If the muons pass through an 

energy absorber as is required for ionization cooling, the momentum and the cyclotron radius are 

reduced.  This damping of transverse momentum in a solenoid without helical magnets is the 

basis for most schemes to accomplish transverse ionization cooling.  Namely, rf cavities replace 

the energy lost in the absorber, boosting the beam momentum in the longitudinal direction so that 

the angular spread ( / zp p⊥ ) is reduced until it is limited by multiple scattering in the 

absorber [24]. 

However, in order to cool the 6D emittance of a beam, the longitudinal motion must be 

moved to the transverse directions where ionization cooling is effective as indicated in figure 1b.  

This emittance exchange is accomplished in the channel proposed in this paper by superimposing 

a transverse helical dipole magnet to the solenoid on the same axis to make possible longitudinal 

as well as transverse cooling.  As will be shown, the helical dipole magnet creates an outward 

radial force due to the longitudinal momentum of the particle while the solenoidal magnet creates 

an inward radial force due to the transverse momentum of the particle, or   

 
;

;
h dipole z

solenoid z z

F p B b B

F p B B B
− ⊥ ⊥

⊥

≈ × ≡

≈ − × ≡
, (I.1) 

where B is the field of the solenoid, the axis of which defines the z axis, and b is the field of the 

transverse helical dipole at the particle position. These are the Lorentz forces that are the starting 

point (III.6) for the derivations of the stability conditions for particle motion in these fields in 

section III.  By moving to the rotating or helical frame of reference that follows the field of the 

helical dipole magnet, a time and z-independent Hamiltonian is then developed to explore the 
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characteristics of particle motion in the magnetic fields of the channel.  After this, a continuous 

homogeneous energy absorber is added along with the “continuous” rf cavities needed to 

compensate for the energy loss and thus maintain the radius of the equilibrium orbit.  Equations 

describing six-dimensional cooling in this channel are also derived, including explicit 

expressions for cooling decrements and equilibrium emittances.  

 

Some of the actual theoretical development of this cooling channel was worked out some 

years ago by one of the authors [17].  In that work, the absorber was seen as composed of a 

homogeneous part and a part with a density gradient.  Since the thinking at the time was that the 

wedge absorber scheme shown in Figure 1a should be dominant, especially in that discrete 

absorbers were always envisioned, the contributions from the homogeneous absorber were not 

considered as significant.  The ideas and mathematical descriptions become more transparent in 

the case of a continuous homogeneous absorber.  Much of the conceptual simplicity is lost in the 

case of discrete absorbers that must be carefully placed between magnetic coils and between rf 

cavities. 

For a given beam momentum, one can vary the solenoid field and the strength and period 

of the helical dipole field.  (The hydrogen gas energy-absorber density is also a free parameter 

provided the density is sufficient to suppress rf breakdown at the required level.)  As we will 

demonstrate below, the helical field that must be superimposed on the solenoidal field must have 

a quadrupole component in addition to the dipole component in order to give the beam additional 

stability.  This component could be added with “ cos 2θ ” quadrupole magnets having the same 

twist period as, and superimposed on, the helical dipole coils. 
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It is important to note that the direction of the solenoidal field does not change in the 

cooling channel described below.  This is an essential difference between the helical dipole 

method and the solenoidal schemes with alternating field directions that have been envisioned up 

to now.  This may also be some technical advantage to the extent that the large magnetic forces 

on the superconducting coils at the field reversal regions can be eliminated.  Although a 

discussion of technical issues should follow the complete analysis of beam dynamics and 

cooling, we note that the use of continuous (or long) solenoids inherent in the helical concept 

should allow a higher maximum effective longitudinal field than that of schemes with alternating 

solenoidal field directions. Consequently, the helical scheme will achieve a smaller equilibrium 

emittance, faster cooling rate, and decreased particle loss from decay. 

 

III. HELICAL ORBIT DYNAMICS 

Beam dynamics in a helical channel has been studied for free electron lasers using a 

specific structure with only odd transverse field harmonics and a solenoid [25] and for a structure 

including a quadrupole harmonic but no solenoid [26].  Below we reproduce an analysis 

performed earlier [17] for the general case.  In developing the cooling theory for a helical beam 

channel, the only important requirement is that the beam size σ⊥  should be small with respect to 

the helix parameter.  A small beam momentum spread is not assumed.   

 

 A. Notation 

In this paper it is assumed that: 

1e− = , in order to simplify later equations involving magnetic fields; 

1c = ; 
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p  is the particle vector momentum;  

2 2
2

11E m p mγ β γ= = + ; = −  ; 

2k π λ= / , whereλ  is the transverse field period, and also the helical orbit period;  

a  is the helix orbit radius (a function of p );  

kaκ =  is a  in terms of 2λ π/ , such that / zp pκ ⊥= for the periodic orbit;  

daD p
dp

=  is the dispersion; D̂ D a= /  is the dispersion factor ; 

x y z, ,  is the Cartesian laboratory frame;  

( )x yρ = ,  is the particle transverse coordinate relative to the structure axis;  

ρ  and ϕ  are the axial coordinates:  

 ix iy e ϕρ+ = ;  

x̂  is the complex transverse coordinate in the rotating or helical frame:  

 ˆ ( ) [ ( )]ikzx x iy e exp i kzρ ϕ−= + = − ;  

( )0,0,B B=  is the solenoid field;  

21ck B pκ= + / ;  

( ) 1cq k k= / − ; 

b  is the transverse magnetic field value at the periodic orbit;  

( )b x y z, ,  is the 3-vector of the periodic field:  

 ( ) ( )b x y z b x y zλ, , + = , , .  

The relationship between the helical magnetic field in the two frames is:  

( ) i
x yb ib b ib e ϕ

ρ ϕ+ = + , 
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where b bρ ϕ, ,  and zb  are functions of only ρ  and kzψ ϕ≡ − ;  

Q+  and Q−  are Q -values or tunes i.e. transverse oscillation frequencies about the periodic orbit;  

ψ+  and ψ−  are the phases of free transverse oscillations ( )kQψ ±±′ = ;  

I+  and I−  are the corresponding action variables (adiabatic invariants, or generalized Courant-

Snyder invariants);  

+Λ  and −Λ  are the transverse cooling decrements ( II ± ± ±= −Λ′  after averaging over )ψ± ;  

γΛ  is the energy cooling decrement:  

 
d

dγ γ
γ

′Λ = − < > , 

where the brackets < ... >  mean averaging over free transverse oscillations (i.e. ψ± ) and z . 

 

 

 

 

 

 

 

FIG. 5.  Diagram of important relationships.  The z axis coincides with the solenoid axis.  

At the periodic orbit, the transverse helical dipole field b  is orthogonal to B  and the radius 

vector a .  The pitch angle of the helix is the arctan ( / zp pκ ⊥= ). 

 

zp  

p  

b  

p⊥  

B  

( )a p  

z 
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Figure 5 shows some of the important geometrical relationships between the magnetic 

fields and particle coordinates used below.   Consider a particle of momentum p  at a radius of 

( )a p in a stable helical orbit about the z axis of the structure, which is parallel to the solenoidal 

field B.  The parameter / zp pκ ⊥=  is the tangent of the pitch angle of the helical orbits.  In the 

numerical example in chapter VI, this angle is 45 degrees and 1κ = as shown in the figure.  The 

transverse helical dipole field b  is orthogonal to the z axis and to the radius vector a .  The 

beam has to be specially prepared and injected into the channel so that the net transverse 

displacements and divergences of its centroid are matched to the helical equilibrium orbit. 

 

 

 

 

 

 

 

 

FIG 6.  Illustration of motion of the beam envelope about the structure z-axis, which 

coincides with the solenoid center.  The motion is in the gaseous hydrogen energy absorber 

that fills the volume of a contiguous series of pillbox rf cavities, which continuously 

replenish the lost energy.  Superconducting coils outside the rf cavities provide the 

magnetic field of the helical channel.   

 

refa  

2 /kλ π=
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Figure 6 is an illustration of how the beam envelope moves around the structure axis 

under the influence of the transverse dipole and solenoidal fields.  The periodic equilibrium orbit 

is a helix of constant radius; particles oscillate transversely about this orbit and oscillate 

longitudinally with respect to the rf with frequencies or tunes as described below. 

 

 B. Helical field 

A static magnetic field in vacuum can be represented as a gradient vector of a scalar 

function:  

 b U= ∇ ,  

where ( )U r  satisfies the equation  

 2 0U∇ = .  

In the case of a helical structure, U  should reflect helical invariance by being a function 

of kzψ ϕ≡ −  and ρ :  

 ( ) ( )U r U ρ ψ= , . 

Then  

 and z
U Ub b b k bρ ϕ ϕρ
ρ ρ ϕ

∂ ∂
= , = , = −
∂ ∂

.  

The Fourier expansion  

 
0

( ) iU U e ψρ
≠

=∑  

leads to an equation for ( )U ρ :  

 2 2
2

1 1( ) ( ) 0d Ud k U
d d

ρ
ρ ρ ρ ρ

− + = . 

A solution regular at 0ρ =  is a modified Bessel function:  
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 ( )U const I kρ= × ,  

 
2

20

( ) 1
2( 4)( )

2 ( )
2

n

t
n

t t
t tI t

en n t
tπ



∞ 



= 



/ !, <<
/ = →  ! + !  , >>

∑  (III.1) 

 

Each harmonic is independent and corresponds to a current distribution  

 i
zj j e ψ

ϕ, ∝  

The most important harmonics are the dipole ( 1= ),  

 

1

1

2 ( )( )

2 ( )
d

d

z

b b I k cos k

b b I k sin
b k b

ϕ

ρ

ϕ

ρ ψ ρ

ρ ψ
ρ

= /

′=
= −

 (III.2) 

and quadrupole ( 2= ):  

 

2
22

2 2

2

(2 )( ) 2( )

1 ( ) (2 ) 2( )

.

o

o

z

b I kb cos
k

b
b I k sin

k
b k b const

ϕ
ϕ

ϕ
ρ

ϕ

ρ ψ ψ
ρ ρ

ρ ψ ψ
ρ
ρ ψ

∂
= −

∂
∂ ′= −
∂

= − , =

 (III.3) 

where db  and ( )o

bϕ
ρ

∂
∂

 are the dipole and quadrupole strengths at 0ρ = , respectively.  Sextupole 

( 3= ), and octupole ( 4)=  harmonics might be needed for particular improvements.  We note 

that this description corresponds to a field produced by simple external conductors and that other 

helical configurations of conductors are possible that would best be described by complementing 

the field description above with MacDonald functions.  In fact, our considerations below rely 

only on the helical invariance of the fields and not on the details of the magnet design. 
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 C. Equations of motion in a helical field 

Here we derive the equations of motion in absence of absorbers and rf fields.  Since the 

corresponding forces for absorbers and rf are weak, these effects can be treated using 

perturbative methods after the magnetic dynamical problem is solved.  The Cartesian coordinates 

are the two transverse coordinates x y, , and the longitudinal coordinate z  which coincides with 

the axis of the magnetic structure, having unit vectors x y ze e e, , .  In the following calculations 

we use the definitions and relationships from above and 

 ( ) ( ) ( )z
dz dz dt dz x y
dt dz

β ρ′≡ , = , ≡ , = , , (III.4)  

 
2

1
1 ( )

z z
z

ppp
p

βρ
β ρ

⊥ ′= , = =
′+

. (III.5) 

Let us use the initial Lorentz equation  

 ( )zp Be b β= + ×   (III.6) 

in order to into separate equations for transverse motion 

 ( )z z z zp B b e b eβ β⊥ ⊥ ⊥= + × + × . (III.7) 

Using (III.4), (III.5) , and complex representation with  

 2 1u x iy i= + , = − , 

we can rewrite (III.7)   as follows: 

 ( ) ( ) ( )z z x yp u i B b u i b ib′ ′ ′= + − + . (III.8) 

This equation is complemented by the expression for zp′ , which can easily be obtained using the 

conservation of total momentum, p , 

 
2

2 3 2

1 ( )
2 (1 )z

up p
u /

′ ′| |′ = −
′+ | |

. (III.9) 
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Next, transform equation (III.8) to the rotating (helical) frame 1 2x x z, ,  with unit vectors 

1 2( ) ( ) zz ze e e, , , where the subscript 1 corresponds to the radial coordinate and field directions 

and the subscript 2 indicates the azimuthal coordinate and field directions. 

Using the relationships  

 1 2ˆ ikzx x ix ue−≡ + =  , ˆ ˆ( ) ikzu x ikx e′ ′= + , 

 1 1 2 2x yxe ye x e x eρ = + = + , 

 1 2( ) ikz
x ye ie e ie e+ = + ,  and 

1 2( ) ikz
x yb ib b ib e+ = + , 

we find 

 2
1 2ˆ ˆ ˆ ˆ ˆ( 2 ) ( )( ) ( ) 0z zzp x ikx k x iB ib x ikx i b ibp′′ ′ ′′+ − + − − + + + =  (III.10) 

with  

 
2

2 3 22

ˆ ˆ1 ( )
ˆ ˆ2 (1 )ˆ ˆ1

z z
p x ikxp pp

x ikxx ikx /

′ ′| + |′= , = −
′+ | + |′+ | + |

. 

Recall that  

 2 1 1 2( )zb k x b x b= − ,  

and the transverse field components 1b  and 2b  are functions of only 1x  and 2x , but not z .  Thus, 

the transverse 1x  and 2x  dynamics in the helical frame is conservative, although the equations 

are coupled and non-linear.  
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 D. Helical orbits 

 1. Periodic orbits 

It follows from the periodicity of the helical fields, that there will be periodic orbits with the 

same periodicity.  The periodic orbit is determined as a solution of (III.10) at  

 

1 2

2 2 1

2

0
i e 0 0

( ) ( 0) 0

.
1

z

const a x a x
const k

b b ka b b
pp

ρ
ϕ ψ ψ

ψ

κ

= ≡ , = , =
′ ′= = , . . = , =

= ≡ , = =

=
+

 

The equilibrium equation is obtained as follows:  

 
2 3 2(1 )1ck b

k kp
κ
κ

/+
− = , (III.11) 

or  

 
2 21 1( )p a B b

k
κ κ

κ
 + +

= − 
 

, (III.12) 

or   

 2 21
1 1 1c

b k q
B k q

κ κ
κ κ

   
= − =   + + +  

. (III.13) 

 2. Dispersion 

The dispersion factor  

 ˆ p daD
a dp

=  

plays a key role in the emittance exchange effect. It can be found immediately using the 

equilibrium equation (III.12):  

 
1

p da a dp
a dp p da

−
 

= ; 
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the result can be expressed as:  

 
2 2

1
2

(1 )ˆ
1

q gD
κ κ

κ
− + −
= +

+
 (III.14) 

where the effective field index at the periodic orbit is 

 
2 3 2

2

(1 ) bg
pk a
κ /− + ∂

≡
∂

. (III.15) 

Note, that the dispersion factor D̂  does not vanish at 0a → , while the dispersion ˆD Da=  

disappears.  

 

 E. Transverse oscillations about the periodic orbit 

1. Tunes of the helical orbits 

Consider a position 1 2u u,  relative to the periodic orbit  

 1 1 2 2( )u x a p u x= − ; =  (III.16) 

Assume 1 0b =  and also 2( ) 0b
ψ
∂

=∂  at 0ψ = .  After a linear expansions of equation (III.10) with 

 ( ) ( )2 22 2 2
1 2 1 2( ) 1 1k u u u u′ ′+ << , + << , (III.17) 

and taking into account the field laws and equilibrium relationship in (III.11), we obtain two 

linear equations:  

 2 1
1 2 12

1 ˆ 0
1
qu ku k D u
κ

−−′′ ′+ + =
+

, (III.18) 

and 

 2
2 1 2( 1) ( ) 0q ku k q g uu ′− − + − =′′ . (III.19) 

These equations are conservative but coupled. The coupling is due to a difference 

between the Coriolis force and the non-equilibrium part of the Lorentz force of the solenoid.  At 
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2ck k= , 1u  and 2u  become decoupled (in linear approximation).  In the following development 

we do not assume that 1u  and 2u  are decoupled, but treat the general case.  The solution of these 

equations can be found as eigenvectors 

 1 1 1

2 2 2

atikQzu c c
e const

u c c

     
     
     
          
     

= , = ,  

where we obtain the zero determinant equation:  

 4 22 0Q Q R G− + = , (III.20) 

with  

 ( )
2

1 1 1
2

2ˆ ˆ ˆ
1
qG q g D D Dκ
κ

− − − +
≡ − = − + 

 (III.21) 

and 

 
2

2

1 1
2 1

qR
κ

 
≡ + + 

. (III.22) 

Thus, the Q -values are found:  

 2 2 2Q Q R R G±= ≡ ± − , (III.23) 

 

and the stability area is established:  

 20 G R< < . (III.24) 

Note that  

 2 2Q Q G+ −⋅ = , (III.25) 

while  

 2 2 2Q Q R+ −+ = . (III.26) 
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Thus we have two tunes for the normal mode oscillations.  For a solenoidal field alone, there is 

only a single frequency, but when the helical field is added the frequency is split. 

 2. Transverse oscillations 

Using equation (III.18), we find the normal oscillation behavior:  

 

1

1

2

2

( )

u cos
kQ sinuX a

u Q sin
k cosu

ψ
ψ

α ψ
α ψ

±

± ±
± ±

± ± ±

± ±±

−′≡ =
/

′

, (III.27) 

where a const± = , Q kz constψ± ±= + , and  

 
2

2 11 ˆ( )
1

Q D
q
κα −

± ±

+
= −

−
. 

We note the useful relationships:  

 2ˆ (1 )Dα α κ+ − = − +  (III.28) 

and 

 
2 2

2
2

2
1 1

Q Q R G
q

α α
α α κ

+ − + −

+ −

−
− = = −

+ −
. (III.29) 

The general solution X  is a sum of X ±  and the helix path:  

 

1

1

2

2

( )
0
0
0

x a p
x

X X
x
x

+ −

′
= + +

′

. (III.30) 

 

 3. Amplitudes 

The solution in (III.27) can be treated also as a transformation from 1 1 2 2,x x x x′ ′, ,  to 

variables of amplitudes and phases of normal mode oscillations. This is reasonable to the extent 
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that perturbative forces related to non-linearities or non-adiabatic changes of fields and absorbers 

are small during a single oscillation period.  The squared amplitudes are of primary importance.  

The transformed relationships can be easily found using (III.27) and (III.30):  

 2 1( ) ( )x k x a ka cosα α α ψ± ± ±′ − − = −∓ ∓ , (III.31) 

and 

 2 2 2
1 2

1 ( )x kQ x Q Q ka sin
Q

α α α ψ± ± ± ±
±

′ + = −∓ ∓ ∓ ∓ . (III.32) 

Thus,  

 
2 2 2

2 2 22 1 1 2
2 2 2 2

[ ( )] ( )
( ) ( )

x k x a x Q kxk a Q
Q Q

α α
α α α α

− − −
+ +

+ − + − − +

′ ′− − +
= +

− −
 (III.33) 

and 

 
2 2 2

2 2 22 1 1 2
2 2 2 2

[ ( )] ( )
( ) ( )

x k x a x Q kxk a Q
Q Q

α α
α α α α

+ + +
− −

+ − + − − +

′ ′− − +
= +

− −
. (III.34) 

 4. Transverse adiabatic invariants 

The effective beam volume in phase space is measured in terms of action variables, or 

adiabatic invariants I± , canonically conjugate with the oscillation phases ψ± . They are 

proportional to squared amplitudes:  

 21
2

I kQ a Rβγ± ± ± ±= ⋅ , (III.35) 

where we have introduced the coefficients ( )R E± . To find them, one can use the canonical 

relationships (see the Appendix):  

 ( ) ( )I E t IPE
ρ ψ

ψ⊥± ± ±
±

∂ ∂
, , = − ,

∂ ∂
, (III.36) 
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where the energy ( E− ) and time ( t ) are considered as one of three “old” canonical pairs, 

together with p⊥  and ρ  (while the z  coordinate is treated as the “time argument”). To 

determine the time t  as function of “new” variables ( )a ψ± ±, , one has to integrate the equation  

 
1

z

t
β

′ =  

along a “solved” particle trajectory.  In linear approximation for free particle oscillations near the 

helical orbit ( )a p z,  we have (see the Appendix) 

 
2

1 1ˆ
1

t t a sin a sin
Q Q
α ακ ψ ψ

β κ

 
 + −
 + + − − 
 + − 

+ +
= + +

+
, ˆ .t const′ = , (III.37) 

where we have introduced a “shortened time” t̂  as a new canonical variable conjugate to the 

energy, -E.   Using the relationships (III.32) and (III.37), the shortened time can be expressed as 

a function of initial variables: 

 1 222

1 1 ˆˆ 1
11
qt t Dx D xκ
κβ κ

 −  ′= + + −  +  +
. (III.38) 

Note that the rate t̂  changes is constant on a particle trajectory in a magnetic field.   

Returning to the derivatives 
2a

E
±∂

∂
, they can be found using the relationships in (III.35)

through (III.37), in which the variables of the rotating frame 1 1 2 2( )x x x x′ ′, , ,  are to be considered 

as functions of ( ) ( )x yx p y p, , , , and energy E .  The calculation in the Appendix gives 

 
2

2
2

12 (1 )aa a cos
E E

ακ ψ
β α

±
± ± ±

±

+∂ +
=

∂
∓ . (III.39) 

Using equations (III.35), (III.36), and (III.37) gives  

 2 3 2 2(1 )
R

Q
α α α
κ
± + −

± /
±

−
= ± ⋅

+
. (III.40) 
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Thus solutions and relationships (III.31) through (III.40) provide a full set of canonical 

transformations from the initial variables ( ),p r  to action and phase variables in a magnetic field 

before an rf field has been introduced. 

 

5. Beam envelopes on a helical orbit 

In the rotating frame of the helical orbit, each of the two normal mode oscillations is 

recognized in transverse space as an elliptical orbit with tune Q+ or Q−  (see equation (III.27): 

 
( ) ( )

1 1

2 2

cos cos
,

/ sin / sin
u u

a a
Q Qu u

ψ ψ
α ψ α ψ

+ −
+ −

+ + + − − −+ −

= = . (III.41) 

With random phase distributions, there are two normal beam ellipsoids of aspect ratios 

 1 1

2 2

,Q Qσ σ
σ α σ α

+ −

+ −+ −

   
= =   

   
. (III.42) 

For ensembles with adiabatic invariants I± , one can average over ψ±  to find the related sizes 1σ  

and 2σ : 

 ( ) ( ) ( ) ( )
2

2 2 2
1 2 1,I Q

k Q
ασ σ σ

γβ α α α
± ± ±

± ± ±
± + − ±

 
= ± =  −  

. (III.43) 

Thus, 1σ  and 2σ  rms sizes can be explicitly found as determined by the two canonical 

(and uncorrelated) emittancesε+  and ε−  by substituting for I±  with I ε± ±= into (III.43) and 

adding a contribution due to energy spread:  

 ( ) ( ) ( ) ( )
2

2 2 2 22 2 2
1 1 1 2 2 2,pD

p
σ σ σ σ σ σ

+ − + −

 ∆
= + + = + 

 
 (III.44) 

The canonical emittances,ε± , will not be disturbed by an adiabatic change of beam optics 

parameters along the beam path in the helical transport line.  These uncorrelated emittances (i.e. 
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the averaged values of adiabatic or generalized Courant-Snyder invariants) also can be conserved 

in transfers from the helical channel to sections with different optics, such as a conventional 

alternating gradient transport with uncoupled planes.  However, special optics will be needed to 

match such a transition in order to avoid an increase of beam emittances. 

 

 F. Longitudinal oscillations in an rf field 

An rf field has to be applied to compensate for energy loss in an absorber to achieve 

substantial ionization cooling.  Thus the beam must first be captured and bunched before the 

cooling described in this paper can be accomplished.  The capture and bunching processes will 

be described in a paper to follow this one.  In this section we introduce the basic characteristics 

of longitudinal dynamics of particles in a bunched beam subject to an rf field on a helical beam 

path without absorber. 

 1. Basic equations 

Longitudinal motion of particles in an rf field is governed by equations for energy E  and 

time t  as a pair of canonically conjugate variables, with the z  coordinate considered a time 

argument and the rf wave number rfk expressed in terms of the rf cavity resonant frequency and 

particle longitudinal velocity, 

/rf zk ω β≈ . 

Assuming, as usual, that the change of particle energy along one period of magnetic and 

electric field and “betatron” oscillations is small, we can express the equations in terms of energy 

and shortened or average time t , given by equations (III.37) and (III.38).  A convenient variable 

is a reference time 

 ( )ˆ /rft k zτ ω= − . (III.45) 
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Note that the rate of change of t̂  as a function of z is not influenced by particle transverse 

oscillations in a focusing magnetic field.  Neglecting the phase ωτ  and the rate of change of 

energy on transverse amplitudes, we obtain the shortened canonical equations: 

 max sin SHγ γ ωτ
τ
∂′ ′= − = −
∂

 and (III.46) 

 21 1 rf
S

k
Hτ κ

β ω γ
∂′ = + − =
∂

, (III.47) 

where 

 2 max1 1 cosrf
S

k
H d γκ γ ωτ

β ω ω
′ 

= + − − 
 
∫  (III.48) 

is the effective longitudinal or synchrotron Hamiltonian, and maxγ ′ is the maximum rate of energy 

change due to the rf field. 

 

The Hamiltonian and equations (III.46) and (III.47) determine the equilibrium phase 

0ωτ = , the equilibrium or resonance energy resγ  such that 

 21 1
res

rfk

γ γ

κ
β ω=

 
+ = 

 
 , (III.49) 

and the phase space trajectory of particle oscillations around the equilibrium orbit where 

 ( ), .SH constγ τ =  (III.50) 

 

 2. Translational mobility of a particle on a helical path 

For a particle of energy E mγ= , the rate of change of phase is given in linear 

approximation by 

 ( )ˆ resτ η γ γ η γ′ = − ≡ ∆  (III.51) 
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where we have introduced a new parameter, η , the translational mobility: 

 
2 2 2

3 2 2

1 1 1ˆ
1

d D
d

κ κ κη
γ β γ β κ γ

 + +
= = − + 

. (III.52) 

This parameter is analogous to the momentum slip factor in a synchrotron, where the factor 

2

2
ˆ

1
Dκ

κ+
 can be identified with 2

1

transitionγ
. 

 

 3. Synchrotron tune 

The rate of change of energy for a particle with phase ωτ  is given in linear 

approximation by 

 maxγ γ ωτ′ ′∆ = − . (III.53) 

Equations (III.51) and (III.53) determine the synchrotron tune, the frequency of phase and energy 

oscillations near the equilibrium where 0τ =  and resγ γ= : 

 2 2 0SQτ ω τ′′ + = , and 2
max /SQ ηγ ω′= . (III.54) 

 

 4. Synchrotron adiabatic invariant, canonical phase, and admittance 

The adiabatic invariant of oscillations about the equilibrium is determined as an area in 

phase space bounded by the ellipse given by equation (III.50): 

 
1

2SI dγ τ
π

= ∆∫ . (III.55) 

For a small oscillation near the equilibrium, SI  is proportional to the Hamiltonian function: 

 ( )2 2

2 2
S S

S
S S

H QI
Q Q

ωη γ τ
ω ω η

≈ = ∆ + . (III.56) 

More generally, there is the relationship 



Submitted to PRSTAB                                                            MUC-PUB-COOL_THEORY-284 

 
     

33

( )S S S SdH Q I dIω=  

with ( )S SQ I  as the amplitude-dependent synchrotron frequency that takes into account the non-

linear behavior of the rf field as a function of phase ωτ .  A canonical variable conjugate to the 

synchrotron invariant SI  is the synchrotron phase SΨ , which varies uniformly on an 

unperturbed orbit: 

 ( )S S SQ Iω′Ψ = . (III.57) 

The maximum SI  value for captured particles, the admittance, corresponds to oscillations near 

the synchrotron separatrix: 

 max
SH γ

ω
′

= ,  and ( ) max2
S adm

I γ
πω ηω

′
=  (III.58) 

On the separatrix trajectory, the frequency SQ  is zero due to the points ωτ π= ± .   

 

 IV. COOLING DECREMENTS 

 A. Absorber drag force  

Muons passing through an absorber experience energy and momentum loss due to 

collisions with electrons.  The collision effect averaged over impact parameters is described by 

the well-known formula for the drag force: 

 
4

2

4 log,
e

F p Znep F
p m

π
β

−
= = , (IV.1) 

where Z and n are the absorber atomic number and concentration, em  the electron mass, andβ  is 

the muon velocity.  Here log is a symbol for the Coulomb logarithm of ionization energy loss for 

fast particles:  
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2

22log ln p
h mµ

β
ν

 
≡ −  

 
, (IV.2) 

with hν  the effective ionization potential [27].  A typical magnitude of the log is about 12 for 

the conditions described below. 

Similar to the radiation force for relativistic electrons in a magnetic field, the drag force 

produces a damping effect on muon transverse oscillations in a focusing field: 

0 0 2, Fp p
mµγ β⊥ ⊥′ = −Λ Λ = . 

Unlike the radiation force, however, the drag force cannot damp the beam energy spread since its 

characteristic energy dependence, /dF dE , is negative or is too small when it is positive 

( 2 logγ > ): 

( )( ), /E F E E dF dE E′ ′= − ∆ = − ∆ , 

 ( ) ( )2

0 2

1 /1/ 2
log

dF dE
β γ

γ

 −
= Λ − + 

  
. (IV.3) 

To achieve longitudinal cooling requires emittance exchange with transverse oscillations 

as discussed in Section II.  Emittance exchange, in turn, requires the introduction of a beam bend 

that creates dispersion, a correlation between the orbit and energy of a particle.  Use of a 

continuous homogeneous absorber, rather than wedges at discrete points, implies a positive 

dispersion along the entire cooling path, a condition that we have shown exists for an 

appropriately designed helical dipole channel.  We have also shown that this condition is 

compatible with stable periodic orbits. 

The linear theory of the damping process including wedge effects was developed earlier 

[15] and later applied and developed in some detail for a homogenous absorber [17].  The 

treatment in this paper follows the analysis in these previous works but includes more detail.  
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Below we will calculate the longitudinal and transverse damping rates along a helical transport 

line in a homogeneous absorber with rf fields.  As an example of how the cooling rates can be 

manipulated, we will then indicate how to achieve balanced 6D cooling, where the three 

decrements are equal. 

 

 B. Longitudinal decrement 

 1. Synchrotron oscillations in the absorber 

Energy loss due to muon collisions with absorber electrons can be included after 

averaging over collision parameters and transverse oscillations about the energy-dependent 

helical orbit: 

 2
max sin 1F

mµ

γ γ ωτ κ′ ′= − − + . (IV.4) 

Expanding energy loss in a linear approximation as a function of energy near the 

reference orbit, we obtain synchrotron oscillation equations: 

 ( )sin sin eq γγ γ ωτ ωτ γ′′∆ = − − −Λ ∆ , (IV.5) 

where 

 2
max sin 1

res

eq
F

mµ γ γ

γ ωτ κ
=

′ = − +  (IV.6) 

and we have introduced the energy decrement as 

 
( )( )2

2
2

02 2

2 1 /2 ˆ1
log 1

d F D
d mγ

µ

β γ κκ
γ γ κ

 −< >  Λ = + = − + + Λ
 +
  

. (IV.7) 

For positive γΛ , synchrotron oscillations will damp with a characteristic exponent γΛ .  Note 

that the synchrotron oscillations in the absorber may last some time since 
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 SQγ ωΛ , (IV.8) 

where 2
max coss eqQ ηωγ ωτ′= . 

The relationship (IV.8) follows from the condition resγ ωγ′ , taking into account that 

max / resγ γ′Λ ∼ unless the translational mobility parameter η  is very small.  Consequently we can 

continue to treat the phase ωτ  and energy motion in terms of oscillations even though the 

reduction in the synchrotron potential well might not be small ( F mγ ′≤ ).  We can characterize 

the oscillations by a modified synchrotron adiabatic invariant as determined by the integral in 

(III.55), but with a Hamiltonian 

 ( ) ( )2
max

ˆ cos sin /
2 eqH η γ γ ωτ ωτ ωτ ω′= ∆ − + . (IV.9) 

Damping due to an emittance exchange mechanism can then be considered a slow process. 

 

 2. Synchrotron oscillation decrement 

Under condition (IV.8) one can calculate the damping rate of SI  using a perturbative 

method.  Considering the adiabatic invariant a function of γ∆  and ωτ  we find the instantaneous 

and average rates of change of the adiabatic invariant: 

S
S

II γ γ
γ

∂′ = − Λ ∆
∂

. 

Using the canonical relationship S

S

I τ
γ

∂ ∂
=

∂ ∂Ψ
and taking into account that 

( )S S S
S S

Q Iτ ττ ω∂ ∂′ ′= Ψ =
∂Ψ ∂Ψ

, 

we find a simple damping equation: 



Submitted to PRSTAB                                                            MUC-PUB-COOL_THEORY-284 

 
     

37

 / 2S SI d Iγ γγ τ π′< >= −Λ ∆ = −Λ∫ . (IV.10) 

Note that the linear reduction of the Hamiltonian has not been used in this derivation.  

Thus in the approximation of a constant energy decrement as in (IV.5), the non-linearity of 

synchrotron oscillations does not affect the cooling rate. 

Note, finally, that the instantaneous rate of change of phase ω τ  is influenced by the 

transverse component of the drag force ( 1x ′∼ ) according to equation (III.38), but the average 

effect is zero: 

1
1

ˆ
0t x

x
τ δτ τ ∂′ ′< > < >=

′∂
∼ . 

 

 C. Transverse decrements 

To derive the transverse rates, we have to calculate the average partial power I±′< > .  

This can be easily done considering I±  as functions of transverse vector momentum p⊥ , 

coordinate ρ , and energy E mγ= :  

 
1

z

I II Fp
γ

β γ
± ±

⊥±
⊥

∂ ∂′ ′= + ⋅
∂ ∂

, (IV.11) 

with  

 21 ( )z FF F F
mµ

ρ ββ γ ρ
β β
⊥

⊥

′
′ ′= − ⋅ = − , = − + . (IV.12) 

We avoid the derivation of the expressions ( )I E zp ρ± ⊥, , , ; instead, we use the canonical 

relationships shown in the Appendix, (IX.6) and (IX.7), then  

 21 1 ( )tI F ρρ ρ
β ψ ψ

 
 
 ±  
 ± ± 

∂ ∂′ ′ ′= − − +
∂ ∂

. (IV.13) 
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Thus, we can simply use the solutions in (III.27) and (III.37) in order to perform averaging over 

the phases ψ± .  Note that  

 
ˆˆ( )xRe xρρ

ψ ψ

∗

± ±

∂ ∂′ ′=
∂ ∂

and 

 2 2
1 22

1 ( ) 1 ( )
1

ku uκρ κ
κ

′ ′+ ≈ + + +
+

. (IV.14) 

The force F  has to be taken as shown in (IV.12).  The right parts of equations (IV.11) 

after averaging over ψ±  become proportional to 2a±  (see (III.27)), i.e. the cooling decrements can 

be defined:  

 II ± ± ±< >= −Λ ,′  

taking into account (III.35).  Performing the averaging, we find:  

 
2 2

2 2 2
2

1 2 (1 )
( ) 1o

Qκ κα α α
α α α κ

 
 ±
 ± ± ± ± 

+ − ±  

Λ +
= ± + + − +

Λ − +
. (IV.15) 

Taking into account relationships in (III.28) and (III.29), we find the sum of transverse 

decrements:  

 
2

2
ˆ2

1o

Dκ
κ

+ −Λ + Λ
= −

Λ +
. (IV.16) 

Combining all the three decrements, we find:  

 2 2
0

1 ˆ2 2
2o

p log
log pγ β β+ −

 ∂
Λ +Λ +Λ = Λ ⋅ + ≡ Λ = Λ ∂ 

, (IV.17) 

where we have introduced the parameter  

 
( )2

2 2 1 /1 logˆ
2 log log

p
p

β γ
β β β

−∂
= + = +

∂
, (IV.18) 

although in the following we will not distinguish between β̂  and β , assuming  
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2 1
2

p log
log p

β ∂
∂

. 

This result (IV.17) agrees with the dissipation theorem [28,29,30]:  

 
3

1

1 ( )
z

F p r
pα

α β=

∂
Λ = − < , > .

∂∑  

The distribution of the two transverse cooling rates is characterized by the difference + −Λ −Λ .   

Using the definitions α± , etc., we obtain:  

 2 2
22

1 1ˆ1 ( 1)
1o

q RD
R G

κ
κ

+ −Λ −Λ  = − + − Λ +−
. (IV.19) 

 

D. Equating the cooling decrements 

If the three cooling decrements are equal, 

3γ + −Λ = Λ = Λ = Λ/ , 

then  

 
2

2
2

1 2ˆ 2 1
3

D κ
β

κ
+  = − 

 
 (IV.20) 

and  

 
2

2
11
3

ckq
k

κβ
β

+
≡ − =

−
. (IV.21) 

As follows from formula (III.14), conditions (IV.20) and (IV.21) also determine the 

effective field index g  as a function of κ  and β :  

 
22 2 2

2 22 2

1 1 4 3
1 2(1 )3 3 2

g κ κ κ ββ
κ κβ β

− + −
= − +

+ +− −
. (IV.22) 
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Condition (IV.21) indicates the necessity of sufficiently strong solenoidal and dipole fields 

according to equations (III.11) or (III.13), while condition (IV.22) determines the quadrupole 

strength.  

The balanced cooling area in terms of parameters κ  and β  can be limited by the 

dynamical stability condition (III.24), which can be rewritten as  

 

1 2 222 2 23 2
2 34

2 2 22 21
3

(1 )1 (1 )0
43 3 2 (1 )

κ κ βββ κ
κβ β β

/     −−+ + < + <    − − −    
. (IV.23) 

In the region 2 3 4β < / , the periodic orbit seems to appear stable at any κ  value, although for 

2 3 4β > /  condition (IV.21) also leaves the beam stable in a wide range of 1κ < .  Note, however, 

that if κ is too small then the beam stability is worse, as can be seen from the formula for the 

oscillation tune Q− ;  

 

1 2
2

2

3
2

3 2
Q G R β

κ β
β

/

−

 − ≈ / ≈
 − 

. (IV.24) 

 

V. EQUILIBRIUM EMITTANCES 

A. Scattering and straggling 

Besides the average ionization energy loss when moving through the absorber, each 

muon exchanges momentum with the atoms of the absorber, both in direction and magnitude.  

The average angular scattering from absorber nuclei and electrons is:  

 
2

2
1sc ed mZ

dz mµ

θ
γ β
+

= Λ . (V.1) 

The spread about the average energy loss is effectively only caused by collisions with electrons, 

because of the large nucleon mass relative to the electron mass:  
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 ( ) ( )
2

2 2 1
4

emd
dz log mµ

γβδγ γ= + Λ . (V.2) 

It is well known that the momentum or energy spread does not include the factor of the 

Coulomb log since it is determined characteristically by interactions with the maximum 

momentum transfer.  The contribution of low momentum transfer collisions to energy diffusion 

appears insignificant, contributing at most to angular scattering and energy loss. 

Correspondingly, the energy straggling grows rapidly with the Lorentz factor of the muon beam.  

 

 B. Longitudinal equilibrium emittance, energy spread, and bunch length  

The equilibrium synchrotron emittance results from the balance between damping and 

growth rates due to both energy straggling and angle scattering.  In the vicinity of the reference 

orbit, the adiabatic invariant can be represented as a quadratic function of energy deviation from 

the equilibrium value and reference time τ  as shown in (III.56).  Then the diffusion growth rate 

of SI  can generally be found as 

 ( ) ( ) ( )22 ˆ
2 2

S
S

d S

Qd dI t
Q dz dz

ωη δγ δ
ω η

′ = + , (V.3) 

where the straggling rate is given by formula (V.2).  The diffusion rate of t̂ can be found using 

equation (III.38) taking into account the continuity of the total phase, rft k zω − , in a collision, 

 ( ) ( )
2

2 2
2 2

ˆ
2 1 scsc

d D dt
dz dz

δ θ
β κ

=
+

 (V.4) 

with the angle scattering rate as given by (V.1). 

Applying the Langevin balance equation [31]: 

( )S S S d
I I Iγ′ ′= −Λ + , 

we obtain the normalized equilibrium synchrotron emittance: 
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 ( )
2 2 2

2
2 6 2 2

ˆ1 1/
4 2log 1

e S
S S eq S d

S

m QZ DI I
m Q kγ

γ µ

ωη γ κε γβ
ω γ β η κ
 Λ + +′≡< > = Λ = + Λ + 

. (V.5) 

The first term in the brackets in (V.5) corresponds to energy straggling and the second term is 

due to tω  diffusion due to scattering. 

Now, knowing the equilibrium emittance, one can easily determine the equilibrium 

energy spread and bunch length, relying on equation (III.56): 

 ( )2 S
S

Qωγ ε
η

< ∆ >=   and  2
S

SQ
ητ ε
ω

< >= . (V.6) 

 

C. Equilibrium transverse emittances 

In order to calculate the scattering rates of transverse emittances, one can use the general 

expressions (III.33), (III.34), (III.35), and (III.40), where the helix radius, a , is a function of 

total momentum, p .  Both the angle and energy scattering will contribute to the growth of 

transverse amplitudes.  Calculating the growth rate due to momentum jumps along the 2x  

direction, we have to take into account that this axis is not perpendicular to the particle total 

momentum direction, but makes an angle with it whose tangent is / zp pκ ⊥= ; thus we find:  

 
( ) ( )

2 22 2 2 22 2 2 3 2
2 2 2 4

1/ 1 1 ˆ( ) { 1 (1 ) 1 1 }
( ) 2

sc
sc

dQ dk a D
dz dz

κ θ κκ κ α δγ
α α α γ β

±
±

+ − ±

+    ′ = + + + + +   −  
∓ . (V.7) 

Applying Langevin’s balance equations  

 2 2 2( )sca a a± ± ± ± ′= −Λ + , (V.8) 

we find the following expressions for the equilibrium normalized transverse emittances;  

 2 5 24 (1 )
emI

kQ mµ

ε
β κ

± ±
± ± /

±

Γ Λ/Λ
= =

+
, (V.9) 

where  
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( )

23
2 2 3 2 2 2 22

2 2 1

( 1)[ (1 ) ] 1 ( 1) 2

ˆ(1 )

Z Q log

D

α κ κ α κ γ

α κ

± ± ±

± −
±

 
+ + + + − + + / 

 Γ ≡
+ +

. (V.10) 

 

VI. NUMERICAL EXAMPLE OF A HELICAL CHANNEL 

Table 1 shows a numerical example of a helical cooling channel using the equations 

derived in earlier sections.  The beam momentum of 100 MeV/c is low compared to the 200 

MeV/c of earlier studies in order to attain the best transverse and longitudinal equilibrium 

emittances as well as to shorten the beam path and reduce the integrated energy loss in the 

absorber.  A rather tight helix ( 1κ ≈ ) has been chosen in this calculation to moderate the 

dispersion required for balanced cooling.  Lower dispersion improves beam stability and reduces 

the contribution of energy spread to the radial beam size, the straggling contribution to 

equilibrium transverse emittances due to dispersion (to about 6%), and the angle scattering 

contribution to the longitudinal emittance (to 33 %).  Note that the calculated 6D emittance may 

not be a minimum, although further optimization has yet to improve the estimated equilibrium 

values significantly.  The cooling effect in this calculation in terms of reduction of the 6D 

emittance is 5x105.  The total energy loss in absorber is about 1.12 GeV.  For a channel of 

continuous dense hydrogen gas with 14 MeV/m of energy loss, this implies a 6D cooling channel 

length, 21.12 / 1
.014

L κ= + = 56 m.   
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 TABLE 1.  Estimated parameters of a helical 6D cooling channel                   
                   Parameter     Unit      Initial Middle ****)       Final 
Beam momentum, p   *)    MeV/c        100       100       100 
Solenoid field, B         T         3.5         8              14 

Cyclotron wave length, 2 /c ckλ π=  *)        m        0.60       0.26       0.14 
Helix period, 2 / kλ π=         m          1       0.44       0.22 
Helical magnet inner radius cm         30           12          7 
Transverse field at magnet        T         1.7        4.2          7.0 
Transverse field at beam center        T         0.7        1.6        3.0 
Helix quadrupole gradient      T/m         1.2        7.5         20 
Helix orbit radius, a    *)      cm         15          6          3 
Dispersion, D       cm         37         15        7.5 

Transverse tunes, /Q Q+ −      0.94/0.57   0.94/0.57    0.94/0.57 

Transverse beta functions, /β β+ −       cm      16/26       6/10      3.2/5.2 
Accelerating rf field amplitude   MV/m        40         40         40 
Frequency, f= /2ω π     GHz        0.2        0.8         1.6 
Absorber energy loss rate /dE ds    MeV/m        14         14          14 

6D cooling decrement length, 1−Λ        m                4          4          4 
Individual decrement lengths       m         12         12          12 

Synchrotron beta function, sβ        m        0.95        0.47        0.32 

Synchrotron tune, 1/s sQ ωβ=          0.25        0.12        0.08 

Synchrotron admittance, aI       cm         3.0        0.37         0.14 

Synchrotron emittance, sε       cm         1.5   **)        0.15  **)     3.10-2       ***) 
Relative momentum spread       %         7.5   **)          3     **)         2        ***)

Bunch length      cm         30    **)         7.5   **)        1.1      ***)

Beam width, a∆       cm          3     **)        0.56  **)       0.15     ***) 

Transverse emittances, /ε ε+ −   cm x rad    1.7/1.7  **)    0.2/0.2  **)  (1/3)10-2     ***)

Beam widths, 1 2/σ σ       cm        8/5    **)    1.8/1.1  **)  0.45/0.28  ***)

 

*) reference orbit 
**) maximum deviation from reference orbit 
***)  rms equilibrium value  
****) at the beginning of the 0.8 GHz section 
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VII. DISCUSSION 

The initial low momentum muon beam with relatively small momentum spread (7.5 %) 

in the example above could be obtained using a short helical channel with an absorber but no rf.  

This possibility was proposed and treated previously [17].  Using emittance exchange in this 

precooling helical channel, all the cooling power of the absorber (with or without wedges) can be 

taken from the transverse coordinates and concentrated on the longitudinal one to cool the energy 

spread.  Maintaining the transverse emittances, or even by allowing some increase in them for 

more reduction of energy spread, it is possible to decrease the absolute energy spread a factor of 

10 or more before the bunch length is increased significantly.  Then, the beam can be captured 

and bunched by an rf field and injected into the basic cooling channel described by Table I.  In 

this way, the total 6D emittance reduction factor could exceed 106.  The estimated length of such 

a deceleration and capture section is less than 25 m.      

The example channel assumes smaller, higher-frequency rf cavities will be used when the 

beam dimensions have been cooled enough to allow them.  Reduced transverse dimensions 

imply that the desired strength of the magnetic fields would be easier to achieve.  Higher 

frequencies make it easier to achieve the desired rf gradients.  Short adiabatic helical transition 

sections would be used to match one stage to the next.   

In order to optimize the rf cavity acceptance, each cavity axis could be centered on and 

aligned with the periodic orbit as the beam wound around the axis of the solenoid, perhaps with 

the rf waveguides passing through the gap in the helical dipole coil.  The large aperture magnets 

and rf cavities for the 200 MHz stage may be a serious technical challenge and future studies will 

be toward replacing the initial stage with precooling sections to reduce the beam size.   The 



Submitted to PRSTAB                                                            MUC-PUB-COOL_THEORY-284 

 
     

46

precooling under consideration involves transverse cooling with a helical quadrupole section and 

longitudinal cooling in a short helical dipole section without rf.    

The estimated cooling channel length of 56 m for a bunched muon beam of 100 MeV/c 

assumes that the channel contains rf cavities that operate while filled with dense hydrogen gas.  

At 50 atmospheres and 77 K, hydrogen gas density is about 21.5% of liquid hydrogen and the 

corresponding /dE ds  for muons with 100 MeV/c momentum, or 46 MeV kinetic energy, is 

about 14 MeV/m.  In this case, the rf cavities must provide sufficient gradient to compensate for 

21dE dE
dz ds

κ= + =20 MeV/m energy loss and provide sufficient rf bucket area for longitudinal 

beam stability.  Thus an average accelerating gradient of around 40 MeV/m is required.   

The project by Muons, Inc. and IIT presently underway at Fermilab to develop high-

gradient pressurized rf cavities is designed to explore the use of hydrogen and helium gas up to 

more than 100 atmospheres pressure at temperature down to 77 K.  Surface gradients of 80 

MV/m for stable operation have been achieved at 800 MHz with 20 sµ pulses in hydrogen at 17 

atmospheres at liquid nitrogen temperature using molybdenum electrodes.  Scaling from the 

measured Paschen curve data from Lab G, hydrogen gas itself at 50 atmospheres and 77K will 

support gradients up to 330 MV/m.  Future proof-of-principle tests include operation in strong 

magnetic fields and in intense ionizing radiation.  Providing sufficient power is also a necessary 

condition for high gradient cavities.  A scheme has been investigated that implies that 50 MV/m 

could be generated at 200 MHz using cold copper pillbox cavities for the short pulses required 

for a neutrino factory or muon collider using pulse compression techniques [32,33]. 

A cooling channel based on the use of helical magnets and a continuous homogeneous 

absorber offers advantages compared to other designs.  One important advantage is that the 

cooling system can be described relatively simply with a time-independent, beam-path-
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independent Hamiltonian that does not depend on z.  Thus the stability and evolution of the beam 

as it cools can be understood using well-established analytical linear and perturbative non-linear 

techniques.  The next steps in the development of the concepts presented here include 

simulations to verify the linear and non-linear aspects of the beam dynamics and to continue the 

experimental investigations to the point that a complete, realistic 6D cooling channel can be 

designed, prototyped, and built.  This concept and particular example are being developed and 

simulated by Muons, Inc. and the Thomas Jefferson National Accelerator Facility [34].  A 

description of the project and a preliminary exposition of the ideas presented in this paper were 

first reported at the Mt. Fuji, Japan cooling workshop [35].   

 

VIII. CONCLUSIONS 

A magnetic channel filled with continuous absorber without special edge shaping can be 

used for emittance exchange cooling of the 6D emittance of a muon beam.  This is true for any 

magnetic arrangement where higher momentum corresponds to a longer path length in a 

homogeneous absorber and therefore larger ionization energy loss.  

The dynamical properties of an attractive example of such a channel have been 

investigated in some detail, where a solenoidal field is combined with a helical field to provide 

superior 6D cooling.  The continuous nature of the magnetic fields and their helical invariance 

allows periodic orbits to be found and their stability and cooling properties to be completely 

analyzed.  We have shown that a continuous, homogenous absorber using high-gradient 

hydrogen-gas-filled rf cavities could provide exceptional 6D cooling in a rather short channel. 
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Six-dimensional cooling using a homogeneous absorber may be a way to achieve the 

beam brightness needed for a muon collider.  If engineering studies and simulations bear out this 

prediction, the case for a muon collider as a future energy frontier machine will be strengthened.   

Recent discoveries have made a neutrino factory an attractive physics opportunity.  The 

6D cooling suggested here could provide a neutrino factory with superior performance and 

reduced costs.

 

IX. APPENDIX: Hamiltonian framework and canonical relationships 

Hamilton’s method provides some important relationships of beam dynamics in a 

magnetic field (or a stationary electromagnetic field).  It is based on the introduction of a 

Hamiltonian with corresponding equations of motion.  An ordinary Hamiltonian form is the 

energy function  

 2 2 2 2ˆ ( )o oE p m A P A m A= + + = − + + , 

with equations of motion  

 ˆ ( )P E P r t
r
∂

= − , , ,
∂

 

and 

 ˆr E
P
∂

=
∂

. 

In the case of a particle beam transported along a fixed direction z , it is convenient to 

consider z  as a time argument, while the time t can be treated as one of three independent 

coordinates x y t, , .  Hamilton’s function and equations of motion in this representation can be 

quickly derived using the covariant equation for the wave function ( )r tΨ , , or the relativistic 

Schroedinger equation: 
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 2 2 2ˆˆ( ) ( ) 0oE A P A m
 
 
 
 

+ − + − Ψ = , 

where  

 Ê i
t
∂

=
∂

 and P i= − ∇  

are the time and space components of 4-vector momentum as a quantum operator. In the 

quasiclassical limit, this equation can be rewritten, optionally, in two possible forms:  

 2 2ˆ( ) o ti P A m A H
t

 
 
 
 
 

∂
Ψ = + + − Ψ ≡ Ψ

∂
, 

with equations of motion  

 
1 [ ] { } t

t t
HP H P H P

i r
∂

= − , = , → − ,
∂

 

and 

 tHr
P

∂
= ,
∂

 

or  

 2 2 2ˆ ˆ( ) ( ) ( )o z zi E A m A H E t zP PAz
ρ

 
 

⊥ ⊥⊥ 
 

∂
Ψ = − + − + − + Ψ ≡ , , , , Ψ

∂
 (IX.1) 

 

with equations of motion  

 zP H
ρ±
∂′ = −
∂

 

and 

 zH
P

ρ
⊥

∂′=
∂
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1ˆ ˆ[ ] ˆ

z
z z

HE H E t H
i t E

∂ ∂′ ′= − , = , = −
∂ ∂

. 

Thus, in the z -representation Hamilton’s function coincides with the canonical 

momentum (with reversed sign) z z zP p A= +  taken as function of energy and transverse 

momentum according to the covariant expression 2 2 2E p m− = .  

For a helical structure, it is convenient to consider particle dynamics in terms of a helical 

frame 1 2( , , )x x z , with  

 1 2 ( ) ikzx ix x iy e−+ = + . (IX.2) 

The new Hamiltonian and equations of motion can be simply found using the wave equation in 

(IX.1), taking into account that  

 1 2
1 2

x ye e e e
x y x x⊥

∂ ∂ ∂ ∂
≡ + = +∇ ∂ ∂ ∂ ∂

 

and 

 1 1 2 2P e P e P⊥ = + ,  

while  

 1 2 1 2
2 1

( ) ( ) ( )x y z kx kx x x z
z z x x
∂ ∂ ∂ ∂
Ψ , , = + − Ψ , ,

∂ ∂ ∂ ∂
. 

Thus, the new Hamiltonian is:  

 2 2 2 2
1 1 2 2 2 1 1 2

ˆ( ) ( ) ( ) ( )h o zH E A m P A P A A k x P x P= − + − − + − + + + −  (IX.3) 

This is the so-called helical invariant.  Since the components of the vector potential 1 2 zA A A, ,  are 

functions of only 1 2x x,  (i.e. ρ  and kzψ ϕ≡ − ), the Hamiltonian hH  is conserved for any 

particle trajectory, together with the energy E  (assuming no rf and space charge forces).  
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Solving the equations of motion in a helical structure, one can find the generalized phases 

±Ψ  and adiabatic invariants (quantum numbers) I±  as functions of 1 1 2 2x P x P E, ; , ; . In these 

variables, the Hamiltonian (IX.3) is a function of only I I+ −, , and E :  

 ( ) 0hH I I EI
ψ± + −

±

∂
= , , =′
∂

 

and 

 ( ) ( )hH E I I kQ E I I const
I

ψ + − ± + −±
±

∂′ = , , = , , =
∂

. (IX.4) 

The energy E , being a global invariant in a magnetic field, is not redefined, but there 

should appear a new time variable t̂  as a canonical phase with a constant rate:  

 ˆ ( )ht H E I I const
E + −

∂′ = − , , =
∂

, (IX.5) 

while the time t  on a particle trajectory can be considered as a function of all the “new” 

variables including t̂  and E . There is a set of differential relationships between the “new” and 

“old” canonical variables [36].  For our situation, the important relationships are:  

 
I
P

ρ
ψ

±

⊥ ±

∂ ∂
=

∂ ∂
 (IX.6) 

and 

 
I t
E ψ
±

±

∂ ∂
= −

∂ ∂
. (IX.7) 

These can be simply proved comparing the Poisson brackets { }I ρ±,  and { }I t± ,  in terms of “old” 

and “new” variables.  

In order to find the dynamical sense of t̂ , one has to integrate the equation  

 
( )211

z

t
ρ

β β

′+
′ = =  
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along a solved particle trajectory.  The inverse particle velocity 1
zβ
−  can be represented as  

 
11 1

z z zβ β β
−− −=< > + ,  

where 1
zβ
−  oscillates as a function of ψ ψ+ −, :  

 
1 0zβ
−< >= .  

Note that 1 1z zβ β−< >= / < > . 

If we introduce the waving fraction of time, t , as  

 ( )t t t ψ ψ+ −=< > + , , 0t< >= , 

where 

 1 ( )z t k Q Q tβ −
+ −

+ −

∂ ∂′= = +
∂Ψ ∂Ψ

  ,    

then the variable t̂  can be identified as  

 ˆ ( )t t t ψ ψ+ −= − , .  

This can be proved by comparing equation (IX.5) to the equation for the original time:  

 ˆ( )h
I I t tt H E I I t kQ kQ

E E I E I ψ ψ
+ −

+ − + −
+ − + −

 ∂ ∂∂ ∂ ∂ ∂ ∂′ ′= − + + , , = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
. 

Note the important relationships which follow from equations (IX.4) and (IX.5):  

 
1

z

k Q
I Eβ ±
±

∂ ∂
= −

∂ < > ∂
. (IX.8) 

These show that the so-called slippage factors, i.e. emittance-related dispersion of the translation 

velocity zβ< > , are simply proportional to the chromaticity of particle tunes [20,21]. 

To determine the time t  as function of “new” variables ( )a ψ± ±, , one has to integrate the 

equation  
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21 1 ˆ ˆ1

z

t x ikx
β β

′ ′= = + +  

along a “solved” particle trajectory.  In linear approximation for free particle oscillations near the 

helical orbit ( )a p z,  we have  

 
2

21
2

( )1
1

ku ut κκ
β β κ

++ ′′ ≈ +
+

. 

To integrate 1u , we have to substitute 1u  as the solution shown in (III.30):  

 1 ( ) a adz u a cos a cos dz sin sin
kQ kQ

ψ ψ ψ ψ+ −
+ + − − + −

+ −

⋅ = + = +∫ ∫ . 

Then we obtain equation (III.37).  The derivatives 
2a

E
±∂

∂
 can be found using the relationships in 

(III.31) through (III.34), in which the variables of the rotating frame 1 1 2 2( )x x x x′ ′, , ,  are to be 

considered as functions of ( ) ( )x yx p y p, , , , and energy E :  

 1 2ˆ ( ) ikzx x ix x iy e−≡ + = + , 

 1 2 2 2 2

( )
ˆ ( )

ikz
x yikz

x y

p ip e
x x ix ik x iy e

E m p ip

−
− +

′ ′ ′≡ + = − + +
− − | + |

. 

Thus, we find 

 
ˆ

0x
E
∂

=
∂

 and 2

ˆ ˆ ˆ

z

x x ikx E
E p
′ ′∂ +
= −

∂
. (IX.9) 

In first approximation, if we neglect the deviations off the equilibrium orbit on the right hand 

equation in (IX.9), then  

 21 2
2 20 (1 )
z

x x ka kaE
E E p E

κ
β

′ ′∂ ∂
= , = − = − +

∂ ∂
. 

Now, we can take the derivatives:  
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2

2 22 1
2 2 2

ˆ( ) [ 1 ]22 (1 )
( )

x k x a Dka kda aa a cos
E E dp E

α α κ
κ α ψ

α α β β β α α± ± ± ±
+ − + −

′ − − − − ∂
= − + + = ± ∂ − − 

∓ ∓ .   (IX.10) 

Finally, using the relationship in (III.28), we find equation (III.39).  
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